

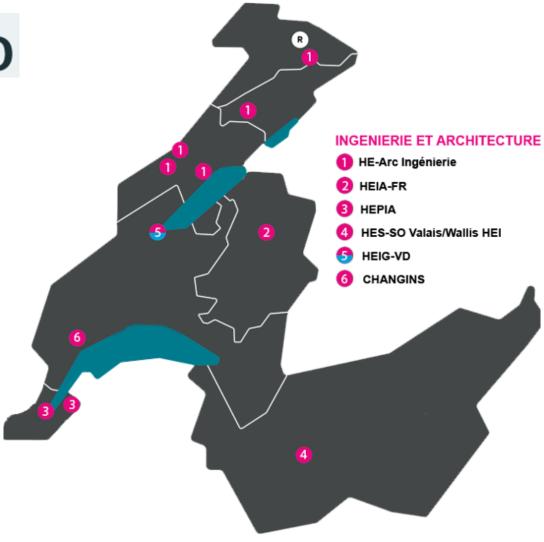
Etude systémique d'un cas concret Marc-Adrien Schnetzer (HEIA-FR)

Hes-so

Objectif

- Montrer l'ancrage professionnel à la HES-SO au moment de l'ouverture d'une nouvelle filière...
- ... en mettant en évidence les complémentarités et différentiations HES et ES.

Mon contexte: HEIA-FR



Mon contexte: HES-SO

Hes·so

Les processus

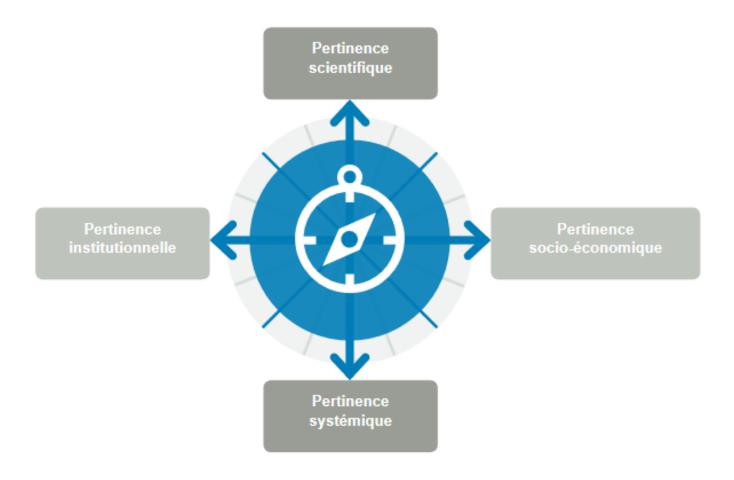
Enseignement du supérieur En CH: HEU, HES, HEP

Copenhague

Enseignement et formation professionnels

En HES, l'enseignement est orienté vers le développement de compétences professionnelles.

Projet de nouvelle filière BSc


- Initiative d'une haute école en Ingénierie de Travaux de construction
- Prochaine étape: soumettre le projet au Conseil de Domaine IA

Si le projet est accepté:

- Accompagnement HES-SO
- Validations formelles

Comment définir un besoin?

Pertinence scientifique

 Quelles sont les orientations du domaine d'études, quels sont les champs de recherche novateurs, directement liés au projet de filière d'études?

→ Vérifier la singularité / l'originalité des enseignements ou projets **scientifiques** qui sont envisagés dans le cadre du projet.

Pertinence socio-économique (1)

- 1. Quelles sont les exigences et quels sont les besoins des milieux professionnels concernés par le projet de filière d'études?
- 2. Quelles compétences développées par les étudiant-e-s au cours de la formation prévue par le projet de filière seront **transférables** dans la pratique ?

Pertinence socio-économique (2)

→ Vérifier la correspondance entre les compétences développées dans la formation (profil de compétences) et les compétences métiers attendues par les professionnels.

Par exemple: opinion des professionnels, des alumnis et référentiels de compétences métiers

Profil de compétences (exemple)

- Concevoir des systèmes mécaniques
- Evaluer un problème de mécanique du solide ou des fluides
- Planifier et optimiser la production de composants mécaniques
- Assurer la qualité produite
- Tester un système mécanique et y apporter les améliorations nécessaires
- Gérer un projet technique et communiquer avec son environnement professionnel

Exemple de la filière Génie mécanique HES-SO

Compétences spécifiques

Α	Concevoir des systèmes mécaniques	
A.1	Elaborer et analyser le cahier des charges (analyse fonctionnelle,)	Jugement
A.2	Proposer des principes physiques et les concepts mécaniques associés (y compris prédimensionnement)	Jugement
A.3	Mettre en pratique une méthode structurée de conception mécanique, y compris assistée par ordinateur	Jugement
A.4	Définir les composants, les matériaux et procédés de réalisations	Jugement
A.5	Utiliser les normes et les standards	Application
A.6	Mettre en pratique l'analyse de cycle de vie lors de la conception d'un produit	Application

Exemple de la filière Génie mécanique (HES-SO)

Label EUR-ACE (1)

Les acquis de formation sont déclinés aux niveaux BSc / MSc dans les 8 domaines d'apprentissage:

- Connaissances et compréhension ;
- Analyse technique;
- Conception technique:
- Études et recherches ;
- Pratique de l'ingénierie;
- Prise de décision ;
- Communication et travail en équipe ;
- Apprentissage tout au long de la vie.

Label EUR-ACE (2)

Pratique de l'ingénierie:

- capacité à appliquer les normes d'ingénierie dans leur domaine d'étude
- sensibilisation aux aspects non techniques (sociétaux, d'hygiène et de sécurité, environnementaux, économiques et industriels) de le pratique de l'ingénierie;
- conscience des problèmes économiques, organisationnels et de gestion (gestion de projet, gestion des risques et du changement...) dans le milieu industriel et des entreprises.

Pertinence socio-économique (3)

- 3. De quelle manière le projet de filière d'études pourrait-il offrir aux étudiant-e-s une meilleure insertion professionnelle ?
- 4. Quelle est l'évolution du marché du travail dans des fonctions en lien avec le projet de filière d'études?

Pertinence socio-économique (4)

- → Vérifier que le projet de filière d'études répond à un besoin des étudiant-e-s et/ou des entreprises ou institutions
- → Prendre en compte la situation du marché du travail au niveau intercantonal, régional, fédéral et européen.

Pertinence socio-économique (5)

5. De quelle manière les professionnels sont-ils capables de répondre aux demandes de stages prévus par le projet de filière d'études ?

→ Prendre en compte les intentions des professionnels quant à la prise en charge des stagiaires issus du projet de filière d'études.

Exemple HEIA-FR (construction)

- Novembre 2021: courte enquête auprès des associations d'entrepreneurs (comités des sections romandes)
- Février et mars 2022: deuxième enquête courte auprès de:
 - Membres des sections SIA
 - Membres de l'AFMC
 - 6 entreprises générales

Exemple HEIA-FR (construction)

- Métiers / domaines touchés:
 - Architectes
 - Ingénieurs en génie civil
 - Ingénieurs CVSE (chauffage-ventilation-sanitaire-électricité)
 - Entreprises de construction (terrassement béton maçonnerie)
 - Entreprises générales ou totales

Pertinence socio-économique (6)

- 6. Comment pouvez-vous vous assurer que le bassin de recrutement estudiantin sera suffisamment important pour pérenniser le projet de filière d'études ?
- → Identifier les étudiant-e-s potentiel-le-s

Exemple HEIA-FR (construction)

- Enquêtes auprès des étudiant-e-s
 - CFC et MP sur Fribourg (EMF et EPAI)
 - Etudiants de l'ETC
 - Etudiants de la HEIA-FR (Architecture et génie civil)
- → Eviter le cannibalisme entre les filières

Pertinence systémique

- 1. Offres de formations similaires déjà existantes ?
- → Au niveau cantonal, intercantonal, régional, fédéral et européen.
- 2. Réponses à des lacunes formulées et observées dans d'autres formations ?
- → Prendre en compte les critiques actuelles des autres programmes.

Pertinence institutionnelle (1)

- Cohérence au sein du portefeuille de formations
- → Analyse des caractéristiques des formations existantes

2. Collaborations futures (ES, HES, universités, en Suisse ou à l'étranger)

Pertinence institutionnelle (2)

- Contribution au rayonnement des activités de Ra&D
- →Examiner les activités de la haute école

Exemple HEIA-FR

Institute of Construction and Environmental Technologies

- √ Structures
- √ Géotechnique
- ✓ Sol et eau
- ✓ Mobilité et transport

- ✓ Explorations structurales
- ✓ Ingénierie du confort intégré
- ✓ Environnement construit
- ✓ Ing. civile et technol. pour la durabilité
- ✓ Building 2050

Résumé

- 1. En HES-SO, la création d'une filière implique une analyse environnementale, notamment sur la **pertinence socio-économique**.
- 2. Les HES sont des formations du tertiaire A professionnalisantes, orientées vers la pratique.
- 3. ES et HES ont des profils et des missions différents. La Ra&D est une des différentiations.
- 4. La perméabilité est une richesse du système et doit être préservée.

Questions / réponses

